为了确保教学的连贯性,教案应明确各环节之间的联系,通过教案的实施,教师能够观察到学生的成长与变化,下面是心得大全网小编为您分享的整数除整数教案精选5篇,感谢您的参阅。
整数除整数教案篇1
教学目标:
(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。
(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。
(三)培养学生养成良好的学习习惯,提高学生的计算能力。
教学重点:
掌握整数、小数四则混合运算的运算顺序。
教学难点:
提高学生计算正确率以及约等号的正确使用。
教学过程:
一、复习准备
1.口算
12+0.12= 7.2-0.2= 3.5÷0.35=
2.95+0.05= 5-0.6= 2.8÷0.14=
8÷12.5= 1.2+2.8-3.99= 4×1.72=
3.74+6.26= 4.5×6= 0.25×4÷0.2=
2÷4= 20×0.2= 20.75-9.5=
3.5×8×0.125=
2.提问
(1)我们学过哪几种运算?
(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)
(3)整数四则混合运算的顺序是什么?
二、学习新课
1.学习例1:3.7-2.5+4.6= 3.6×6÷0.9=
(1)思考:以上两题中分别含有什么运算?运算顺序怎样?
(2)学生试算后订正。
3.7-2.5+4.6
=1.2+4.6
=5.8
3.6×6+0.9
=21.6÷0.9
=24
(3)小结运算顺序
①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。
②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)
③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)
2.学习例2:35.6-5×1.73= 6.75+2.52÷1.2=
(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?
(2)学生计算后订正。
(3)小结。
以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?
讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
(4)练习:先说出运算顺序,再算出得数。
①p37“做一做”;②3.6÷1.2+0.5×5。
思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)
②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)
教师介绍:小括号“( )”是公元17世纪由荷兰人吉拉特首先使用。中括号“[ ]”是公元17世纪首次出现在英国的互里士的著作中。
小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)
3.试做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=
(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
(2)学生试做
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解
在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。
要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)
学生继续计算后,订正
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
≈2.12×5
=10.6
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
≈0.42
提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)
4.小结
(1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)
(2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)
(3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的.。)
三、巩固反馈
1.p38:做一做。
2.p40:1①②,2①②。
(1)说出运算顺序;
(2)计算并且验算;
(3)订正并小结验算方法。
验算方法:①原式验算;②互逆验算;③交换验算。
3.判断下面各题,哪些是对的,哪些是错的,并说明原因。
(1)0.8-0.8×0.7=0( );
(2)1.6+1.4×2=6( );
(3)50-3.9+6.1=40( );
(4)20÷2.5×4=32( );
(5)9.6+0.4-9.6+0.4=0( );
(6)4.8×2÷4.8×2=1( )。
4.p40:4。先计算填空,再列出综合算式。
5.课后作业:p40:1③④,2③④,3。
设计说明:
整数、小数四则混合运算是在整数四则混合运算及小数四则计算的基础上进行的,它是小学数学知识的重要组成部分,是解答应用题的基础。教学中通过学生对具体算式的分析及计算,引导学生对四则混合运算顺序进行概括、总结和提高,使学生对四则混合运算顺序有系统的认识,以完善学生的认知结构,提高学生的概括能力。
整数、小数四则混合运算顺序与整数四则混合运算顺序相同,学生容易掌握,但又容易被数字迷惑,造成错误,因此设计判断题,提高学生的辨别能力。
约等于符号的使用是学生学习的难点,容易被学生忽视,采取由学生先试做,再讲道理的方法,给学生留下较深的印象。
为提高学生的计算能力,加强了口算练习,并要求学生验算,重视培养学生养成良好的学习习惯。
整数除整数教案篇2
一、教学目标:
1、学生掌握整数除以整数商是小数的计算方法,能正确进行计算。
2、运用乘除法的关系,正确地进行验算。
二、教学重点:
掌握整数除以整数商是小数的计算方法。
难点:运用乘除法的关系进行验算。
三、教学准备:
卡片和多媒体。
四、教学过程:
a、复习知识:
a、计算:36.4÷413.76÷320.81÷9
b、把54和102改写成两位小数。
b、讲授新课;
例5:求102除以24的商。
1、怎样列算式?102÷24把它计算好。
2、今天我们商要用小数来表示,怎样计算呢?试一试。
3、除到被除数的个位还有余数,我们可以在商的个位右边点上小数点,在余数的右边添上0,再继续除。
4、6表示什么?添上0以后60又表示什么?
5、学生复述一遍此题的计算过程。
6、我们怎样验算商是正确?学生验算。
c、巩固练习:
a:计算:162÷1281÷45434÷700
1、学生独立完成,要求验算,对个别学生进行帮助。
2、被除数小于除数,整数部分不够商1,怎么办。
b:口算训练:p-29第一题
c:对比训练:
195÷50660÷75400÷32
19.5÷5066÷754÷32
1.95÷506.6÷750.4÷32
1、引导学生观察分析,商的'小数点要和被除数的小数点对齐,被除数缩小几倍,除数不变,商怎么办?
d、根据15010÷95=158直接写出下面各题的商。
15.01÷951501÷951.501÷95
1、让学生独立完成,并说出理由。
d、课堂小结:
1、整数除以整数商是小数应该要注意哪些方面?
2、被除数缩小几倍,除数不变,商怎么办?
e、强化练习:
计算:p-29第四题
f、布置作业:p-29第三题。
整数除整数教案篇3
教学内容:
人教版小学数学教材五年级上册第24~25页例1、例2、例3及做一做,练习六第1~6题。
教学目标:
1.理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。
2.培养学生的分析能力和类推能力。
3.体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。
教学重点:
理解并掌握除数是整数的小数除法的计算方法。
教学难点:
理解商的小数点定位问题。
教学准备:
将本课教学内容制成ppt课件。
教学过程:
一、复习引入
1.用竖式计算:2684、2244、2526、34515。
2.说一说:2244这道题是怎样计算的?(教师适时板书或演示ppt课件。)
3.引入新课:这节课我们就用同学们掌握的整数除法的知识来学习新的知识。
?设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。
二、探究新知
(一)教学例1
1.出示例1,引导理解题意。(ppt课件演示。)
(1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步22.4 km。)
(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)
2.尝试列式,分析数量关系。
(1)要求他平均每周应跑多少千米,应该怎样列式?(学生口头列式,教师板书或ppt课件演示:22.44。)
(2)引导思考:为什么用22.44?(路程时间=速度)
3.揭示新课,感受学习价值。
(1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)
(2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,小数除法还是数学四则运算中的重要组成部分。从今天开始,我们就学习一个新的单元──小数除法(板书单元课题:小数除法),这节课我们先学习除数是整数的小数除法。(板书本节课课题:除数是整数的小数除法。)
4.提出问题,自主思考算法。
(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?
(2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)
5.教师引导,交流不同算法。
(1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?
(2)指名学生回答。(教师适时板书或ppt课件演示。)
预设一:把被除数扩大到原来的10倍变成224,把除数也扩大到原来的10倍变成40,再来计算。(虽然变成了整数除以整数的形式,但在计算时仍然会遇到小数除法的问题,学生无法完成计算。)
预设二:把22.4 km改写成22400 m,再来计算。
(3)交流对想法二的感受:这样虽然可以算出结果,但是计算时你有什么感觉呢?
6.分步探讨,理解竖式算理。
(1)引导谈话:想法二虽然可以算出结果,但是计算过程比较麻烦;想法一虽然没有算下去,但却提示我们小数除法也可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。
(2)指导学生列出除法竖式。(教师板书或ppt课件演示。)
(3)引导学生计算,并适时提问:这个余下的2表示什么?(教师用小纸片遮挡住被除数的小数部分,并适时板书,或用ppt课件演示。)
(4)引导学生理解除到被除数十分位的算理,并适时提问:这个24又表示什么呢?(教师揭去遮挡的小纸片,并适时板书,或用ppt课件演示。)
(5)引导学生完成计算,并适时提问:用24个十分之一除以4,每份是多少?怎样在商上面表示6个十分之一?(教师适时板书或ppt课件演示。)
(6)引导学生比较列竖式计算和将22.4 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?说明了什么?
7.观察对比,归纳计算方法。
(1)引导学生观察小数点的位置,提问:观察竖式中被除数和商的小数点,你发现了什么?( ppt课件演示。)
(2)引导学生对比22.44和2244的竖式计算,提问:你发现它们在竖式计算中哪些地方相同?哪些地方不同?(教师用ppt课件呈现上面两题的竖式。)
(3)引导学生归纳除数是整数的小数除法的计算方法,提问:经过上面的探讨,你认为应该怎样计算除数是整数的小数除法?(①按照整数除法的方法去除;②商的小数点要和被除数的小数点对齐。)
8.及时巩固,形成计算能力。
(1)完成第24页做一做。(可以让学生任选一题计算。)
(2)展示学生作业,并让学生说一说自己是怎样计算的?
?设计意图】例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。
(二)教学例2
1.出示例2。(ppt课件演示。)
2.引导学生理解题意,列出算式。(教师板书或ppt课件演示:2816)
3.学生尝试竖式计算,然后小组里相互交流。
(1)你是怎样用竖式计算的?
(2)你在计算过程中遇到什么问题?你是怎样解决的?
4.组织学生交流竖式计算过程,明确算理和算法。(教师适时板书或ppt课件演示。)
(1)你在计算过程中遇到什么问题?你是怎样解决的?
(2)除到被除数的末尾还有余数时,为什么可以添0继续除?
(3)除得的7为什么写在十分位上?
(4)除得的5为什么写在百分位上?
(三)教学例3
1.出示例3。(ppt课件演示。)
2.引导学生理解题意,列出算式。(教师板书或ppt课件演示:5.67)
3.学生尝试竖式计算,然后同桌相互交流。
(1)你是怎样用竖式计算的?
(2)你在计算过程中遇到什么问题?你是怎样解决的?
4.组织学生交流竖式计算过程,明确算理和算法。(教师适时板书或ppt课件演示。)
(1)你在计算过程中遇到什么问题?你是怎样解决的?
(2)为什么商的个位要写0呢?
?设计意图】例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,不是直接告诉学生具体的计算方法,而是关注学生的数学思维发展,放手让学生自主尝试竖式计算,在尝试计算中发现它们的特殊之处,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。
(四)小结和验算
1.引导学生进一步归纳除数是整数的小数除法的计算方法以及计算时要注意的问题。( ppt课件演示)
(1)按照整数除法的方法去除;
(2)商的小数点要和被除数的小数点对齐;
(3)除到被除数的末尾仍有余数,就在末尾添0再继续除;
(4)整数部分不够除,在个位商0,点上小数点继续往下除。
2.引导学生自己尝试验算。
(1)引导:要检验小数除法的计算结果是否正确,可以怎么办?
(2)学生自主验算:请同学们从三道例题中任选一题进行验算。
(3)组织学生交流验算方法。
?设计意图】本环节放手让学生结合自己的计算体会,引导学生在交流和讨论中进一步归纳出除数是整数的小数除法的计算方法以及计算时要注意的问题。这样既有利于学生在理解算理的基础上掌握算法,为后面继续学习小数除法打下扎实的基础,又有利于学生归纳概括能力、数学表达能力的培养和发展。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。
三、巩固练习
(一)基本练习
第25页做一做。
可以让学生从每组中各选择一题进行计算练习。
(二)提高练习
1.练习六第1题。
(1)指导学生按题组计算,在计算中比较每组的两题有什么相同,有什么不同。
(2)引导学生通过对比,理解它们的计算方法相同,不同的是商的小数点的处理。
2.练习六第6题。
(1)学生独立判断。
(2)组织学生交流错在哪里,并改正。
(三)解决问题
练习六第3题。
(1)引导学生理解题意。
(2)引导学生根据一共花的钱分钟数=每分钟花的钱的数量关系列式。
(3)学生列竖式计算,然后交流订正。
四、课堂总结
1.计算除数是整数的小数除法要注意什么?
2.阅读课本第24、25页,关于这节课的学习内容你还有什么疑问?
3.通过这节课的学习,把你感受最深的一点说给大家听一听!
?设计意图】通过回顾和梳理,再次强化重点,并质疑解惑。
五、作业练习
(一)课堂作业
1.练习六第4题(第一行)。
2.练习六第5题。
(二)课外作业
1.练习六第2题。
2.练习六第4题(第二行)。
整数除整数教案篇4
教学内容:整数、带分数化成假分数
教学目标:
1、理解并掌握把整数、带分数化成假分数的方法,能正确的把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系进行初步的辨证唯物主义观点的。
教学过程:
一、复习
假分数化成整数、带分数的过程。
二、引入新课
例4把1化成分母是2、3、4、5的分数
分析:一个圆可以分成2个1/2,3个1/3,4个1/4,5个1/5。所以1=2/2=3/3=4/4=5/5
结论:把整数”1“平均分成2份,
1可以表示分子、分母是任意自然数,而且分子和分母相同的假分数。
例5把2和4分别化成分母是3的假分数
分析:因为1里面有3个1/3,所以2里面有(3×2)个1/3.,4里面有(3×4)个1/3。
讨论:
(1)整数化假分数,用指定的.分母做分母,用整数与分母相乘的积做分子。
(2)整数可以化成分母是任意自然数的假分数。
(3)任何自然数,都可以写成分母是1的假分数,并用这个自然数做分子。
例6把二又四分之三化成假分数
分析:2里面有(2×4)个1/4,再加上3个1/4,一共是(4×2+3)个1/4,
讨论:带分数化假分数,用原来的分母做分母,用整数和原来的分母相乘的积,再加上原来的份数部分的分子,
三、巩固练习
1、练一练
比较下面每组数的大小
四、
归纳
1、整数化成假分数,用指定的分母做分母,用整数和指定的分母相乘的积做分子,
2、带分数化假分数,用原来的分母做分母,用整数部分和原来的分母相乘的积,再加上原来的分数部分的分子做分子。
五、布置作业
反思:把整数、带分数化成带分数我觉得应遵从这样的教学过程:
1、首先应加强“1”的训练,强化1里面有2个1/2,3个1/3,4个1/4…………………。
2、在教学2里面有几个1/2、1/3、1/4………..。3里面有几个1/2、1/3、1/4………..让学生知道整数就有整数×分母个几分之几。
3、然后在教学带分数转化成假分数。
整数除整数教案篇5
教学基本内容:
教科书第68~69页例1、“试一试”“练一练”,练习十二第1-3题。
教学目标:
教学目的和要求
1、使学生在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。
2、使学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括以及合情推理能力,感受数学探索活动的乐趣。
教学重点
及难点探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。
教学方法
及手段比较,类推
学法指导比较,概括
教学环节设计
一、创设情境,引入新课
1、谈话
2、出示例题的场景图,提问:从图中你能知道什么?
3、引导:根据图中的信息,要求“夏天买3千克西瓜要多少元”这个问题,你会列式吗?“0.8×3”是求几个0.8相加的和?这个乘法算式和我们以前学习的乘法算式有什么不同?(有一个因数是小数)
板书课题:小数乘整数。
二、探索计算方法
1、启发:你能用以前学过的知识算出“0.8×3”的得数吗?先想一想,再算一算。学生各自思考、计算,师巡视,了解学生用什么方法。
2、交流:谁先来说说,你是怎样计算的?算出的结果是多少?
学生回答后继续提问:谁还用不同的计算方法?
3、指出:“0.8×3”也可以用乘法竖式计算.
板书竖式:
讨论:谁能看着竖式,说说用竖式计算“0.8×3”的过程?
比较:0.8是几位小数?2.4呢?
4、提出要求:冬天买3千克西瓜要多少元?先列加法竖式计算,再列乘法竖式计算。
学生按要求独立进行计算。
5、交流:列出的加法计算式是求几个2.35相加的和?列出的乘法算式呢?谁来说说用乘法竖式计算的过程?
2.35是几位小数?2.35×3的积是几位小数?
6、猜想:如果用一个三位小数乘3,积会是几位小数?如果用一个四位小数乘3呢?
三、教学“试一试”归纳计算方法。
1、出示4.76×12,2.8×53,103×0.25,要求先猜一猜积是几位小数,再用计算器验证。
2、讨论:通过刚才的计算和比较,你认为在计算小数乘整数时,可以怎样确定积的小数位数?
3、小结:计算小数乘整数时,一般可以先按整数乘法算,再看因数里有几位小数,就从积的右边起数出几位,并点上小数点。
四、指导练习
完成练一练第1题。
集体交流、纠正。
小结:如果积是小数而且末尾有0,一般要进行化简。
提问:刚才计算的四道题中,还有哪些题目的计算结果需要化简的?
2、指导完成练一练第2题。
先让学生根据要求在教科书上填一填。
指名交流
五、课堂作业
要求学生在作业本上计算练习十一第1,2,3题。
板书设计
执行情况
与教学反思
五年级数学课程教案
年级五年级主备人赵群备课时间20xx年10月14日
周次10课次2
授课课题小数点向右移动引起小数大小变化的规律
教学
基本内容教科书第69~70页例2,例3及相应的“试一试”“练一练”,练习十二第4~7题。
教学目的
和要求1、让学生理解并掌握小数点向右移动引起小数大小变化的规律,能应用规律口算一个数乘10、100、1000……的积,并能用以解决名数化法之类的实际问题。
2、在探索规律的过程中,培养学生初步的观察,比较,归纳,概括的能力。
3、在探索规律的过程中,培养学生合作交流的能力和良好的数学学习情感。
教学重点
及难点理解并掌握由小数点向右移动引起小数大小变化的规律。
教学方法
及手段自主探索总结概括
学法指导观察,比较,归纳
教学环节设计
一、复习铺垫,揭示课题。
1、听算几道计算题。
5×1024×10
5×10024×100
5×100024×1000
谈话:你们怎么那么快算出了它们的结果?
学生说说口算的方法:一个整数乘10、100、1000……只要在这个整数的后面添上一个“0”,两个“0”……
追问:那么一个小数乘10、100、1000呢?
2、出示:4.053、40.53、405.3
谈话:这几个小数有什么相同点和不同点?
那么这种变化有什么规律呢?今天我们一起来研究。
揭示课题。
二、引导探究,得出规律。
1、教学例2。
(1)出示例2:5.04分别乘10、100、1000各是多少?用计算器计算,并观察小数点位置的变化情况。
(2)指导交流。
谈话:谁来说说5.04乘几,和原数比较小数点向哪边移动了几位?
根据学生交流板书:
5.4×10=504小数点向右移动一位
5.04×100=504小数点向右移动两位
5.04×1000=5040小数点向右移动三位
(3)谈话:我们知道5.04分别乘10、100、1000,得到的结果就是分别把5.04的小数点向右移动一位,两位,三位,那么乘10000、100000呢?
整数除整数教案精选5篇相关文章: