奇函数偶函数教案7篇

时间:
Brave
分享
下载本文

结合实际生活的教案实例,让学生的学习更加贴近现实,教案中的评估环节能够帮助教师及时掌握学生的学习状况,调整教学进度,心得大全网小编今天就为您带来了奇函数偶函数教案7篇,相信一定会对你有所帮助。

奇函数偶函数教案7篇

奇函数偶函数教案篇1

教学目标:

进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

教学重点:

用指数函数模型解决实际问题。

教学难点:

指数函数模型的建构。

教学过程:

一、情境创设

1.某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为万元,后年的产值为万元.若设x年后实现产值翻两番,则得方程。

二、数学建构

指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

三、数学应用

例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中oa是线段,曲线abc是函数=at的图象。试根据图象,求出函数=f(t)的解析式。

例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

(1)写出本利和随存期x变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。

例52000~2002年,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。

奇函数偶函数教案篇2

一、教材及学情分析

?二次函数的图像与性质》是北师大版九年级下册第二章第二节的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常重要的作用。另外,本节课最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。

二、教学目标及重、难点分析

通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。我认为这节课的重点是:作出函数=ax2+c的图象,比较函数=ax2和函数=ax2+c的异同,了解它们的性质;函数=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。

知识与技能目标

(1) 会做函数=ax2和=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;

(2) 了解抛物线=ax2上下平移规律。

过程与方法目标

本节课,过程是由抽象到直观,再由直观到抽象(既二次函数=ax2+c的关系式——作出图像——说出二次函数=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。

情感、态度与价值观

引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。

三、教学结构设计

建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式——学教结合式。让学生先自己动手画图,然后由老师来演示,这样从直观的看图观察,思考,提问,容易激发学生的求知欲望,调动学生学习的兴趣。以“学教结合”为模式的课堂结构设计为“三个阶段”:

①准备阶段 教师先从回忆函数=ax2图象与性质,从而导入二次函数=ax2+c的图像与性质,进而带出本节课的学习目标。

②参与阶段 学生围绕目标自我表现,相互交流,启发理解。

③应用与升华阶段 这一阶段是让学生从“学会”到“会学”的升华。延伸阶段要做到“三化”,一是知识的深化,二是知识向能力、技能的转化,三是学习方法的固化,即演练巩固,牢固掌握其方法。

奇函数偶函数教案篇3

一、教材分析

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

二、学情分析

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

三、目标分析

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).

(a)4 (b)5 (c)6 (d)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

六、教学反思

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

奇函数偶函数教案篇4

一、学情分析:

学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

二、学习目标:

本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

1.初步理解二元一次方程和一次函数两种数学模型之间的关系;

2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.

教学重点

二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;

教学难点

通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

第一环节:探究二元一次方程和一次函数两种数学模型之间的关系

1.某水箱有5吨水,若用水管向外排水,每小时排水1吨,则x小时后还剩余y吨水.

(1)请找出自变量和因变量

(2)你能列出x,y的关系式吗

(3)x,y的取值范围是什么

(4)在平面直角坐标系中画出这个函数的图形.(注意xy的取值范围).

2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数y=5-x的图象上吗?

(3).在一次函数y=x5的图像上任取一点,它的坐标适合方程x+y=5吗?

(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=x5的图像相同吗?

x+y=5与y=x5表示的关系相同

一般地,以一个二元一次方程的解为坐标的`点组成的图象与相应的一次函数的图象相同,是一条直线.

目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=x5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节自主探索方程组与一次函数两种数学模型之间的关系

探究方程与函数的相互转化

1.两个一次函数图象的交点坐标是相应的二元

一次方程组的解

(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?

(2)两个函数的交点坐标适合哪个方程?

xy5(3).解方程组验证一下你的发现。 2xy1

练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。

xy2(1)解

2xy5(2)以方程x+y=2

(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

(5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,

由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.

练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

第三环节模型应用

1.某公司要印制产品宣传材料.

1500元制版费.甲印刷厂:每份材料收1元印制费,另收乙印刷厂:每份材料收2.5元印制费,不收制版费.若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙

印刷厂的费用。

(1)请分别表示出两个印刷厂费用与x的关系式。

(2)在同一直角坐标系中画出函数的图象。

(3)如何根据印刷材料的份数选择印刷厂比较合算?

第四环节模型特例

想一想

内容:在同一直角坐标系内,一次函数y = x + 1和y = x - 2的图象(教材xy1124页图5-2)有怎样的位置关系?方程组解的情况如何?你发现了什xy2

么?

二元一次方程的解和相应的两条直线的关系2.

(1)观察发现直线平行无交点;

(2)小组研究计算发现方程组无解;

(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯.

进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节课堂小结

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

以二元一次方程的解为坐标的点都在相应的函数图像上;

一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

方程组的解是对应的两条直线的交点坐标;

两条直线的交点坐标是对应的方程组的解;

第六环节作业布置

习题5.7

奇函数偶函数教案篇5

一、内容与解析

(一)内容:对数函数的性质

(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

二、目标及解析

(一)教学目标:

1.掌握对数函数的性质并能简单应用

(二)解析:

(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

四、教学支持条件分析

在本节课的教学中,准备使用(),因为使用(),有利于().

五、教学过程

问题

1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

设计意图:

师生活动(小问题):

1.这些对数函数的解析式有什么共同特征?

2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

3.通过这些函数图象请从函数值的分布角度总结相关性质

4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

问题3.根据问题1、2填写下表

图象特征函数性质

a>10<a<1a>10<a<1

向y轴正负方向无限延伸函数的值域为r+

图象关于原点和y轴不对称非奇非偶函数

函数图象都在y轴右侧函数的定义域为r

函数图象都过定点(1,0)

自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

例1.比较下列各组数中两个值的大小:

(1) log 23.4 , log 28.5

(2)log 0.31.8 , log 0.32.7

(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

变式训练:1. 比较下列各题中两个值的大小:

⑴ log106 log108

⑵ log0.56 log0.54

⑶ log0.10.5 log0.10. 6

⑷ log1.50.6 log1.50.4

2.已知下列不等式,比较正数m,n 的大小:

(1) log 3 m t; log 3 n

(2) log 0.3 m > log 0.3 n

(3) log a m t; loga n (0 log a n (a>1)

例2.(1)若 且 ,求 的取值范围

(2)已知 ,求 的取值范围;

六、目标检测

1.比较 __的大小:

2.求下列各式中的x的值

(1)演绎推理导学案

2.1.2 演绎推理

学习目标

1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

学习过程

一、前准备

复习1:归纳推理是由 到 的推理.

类比推理是由 到 的推理.

复习2:合情推理的结论 .

二、新导学

※ 学习探究

探究任务一:演绎推理的概念

问题:观察下列例子有什么特点?

(1)所有的金属都能够导电,铜是金属,所以 ;

(2)一切奇数都不能被2整除,2007是奇数,所以 ;

(3)三角函数都是周期函数, 是三角函数,所以 ;

(4)两条直线平行,同旁内角互补.如果a与b是两条平行直线的同旁内角,那么 .

新知:演绎推理是

的推理.简言之,演绎推理是由 到 的推理.

探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

所有的金属都导电 铜是金属 铜能导电

已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

大前提 小前提 结论

新知:“三段论”是演绎推理的一般模式:

大前提—— ;

小前提—— ;

结论—— .

新知:用集合知识说明“三段论”:

大前提:

小前提:

结 论:

试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.

※ 典型例题

例1 命题:等腰三角形的两底角相等

已知:

求证:

证明:

把上面推理写成三段论形式:

变式:已知空间四边形abcd中,点e,f分别是ab,ad的中点, 求证:ef 平面bcd

例2求证:当a>1时,有

动手试试:1证明函数 的值恒为正数。

2 下面的推理形式正确吗?推理的结论正确吗?为什么?

所有边长相等的凸多边形是正多边形,(大前提)

菱形是所有边长都相等的凸多边形, (小前提)

菱形是正多边形. (结 论)

小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

三、总结提升

※ 学习小结

1. 合情推理 ;结论不一定正确.

2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误

2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

结论显然是错误的,是因为

a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误

3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误

4.归纳推理是由 到 的推理;

类比推理是由 到 的推理;

演绎推理是由 到 的推理.

后作业

1. 运用完全归纳推理证明:函数 的值恒为正数。

总 课 题空间几何体总课时第4课时

分 课 题直观图画法分课时第4课时

目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

重点难点用斜二侧画法画图.

引入新课

1.平行投影、中心投影、斜投影、正投影的有关概念.

2.空间图形的直观图的画法——斜二侧画法:

规则:(1)____________________________________________________________.

(2)____________________________________________________________.

(3)____________________________________________________________.

(4)____________________________________________________________.

例题剖析

例1 画水平放置的正三角形的直观图.

例2 画棱长为 的正方体的直观图.

巩固练习

1.在下列图形中,采用中心投影(透视)画法的是__________.

2.用斜二测画法画出下列水平放置的图形的直观图.

3.根据下面的三视图,画出相应的空间图形的直观图.

课堂小结

通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

奇函数偶函数教案篇6

教学目标:

1.使学生理解幂函数的概念,能够通过图象研究幂函数的性质;

2.在作幂函数的图象及研究幂函数的性质过程中,培养学生的观察能力,概括总结的能力;

3.通过对幂函数的研究,培养学生分析问题的能力.

教学重点:

常见幂函数的概念、图象和性质;

教学难点:

幂函数的单调性及其应用.

教学方法:

采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性,教师利用实物投影仪及计算机辅助教学.

教学过程:

一、问题情境

情境:我们以前学过这样的函数:=x,=x2,=x1,试作出它们的图象,并观察其性质.

问题:这些函数有什么共同特征?它们是指数函数吗?

二、数学建构

1.幂函数的定义:一般的我们把形如=x(r)的函数称为幂函数,其中底数x是变量,指数是常数.

2.幂函数=x 图象的分布与 的关系:

对任意的 r,=x在第i象限中必有图象;

若=x为偶函数,则=x在第ii象限中必有图象;

若=x为奇函数,则=x在第iii象限中必有图象;

对任意的 r,=x的图象都不会出现在第vi象限中.

3.幂函数的性质(仅限于在第一象限内的图象):

(1)定点:>0时,图象过(0,0)和(1,1)两个定点;

≤0时,图象过只过定点(1,1).

(2)单调性:>0时,在区间[0,+)上是单调递增;

<0时,在区间(0,+)上是单调递减.

三、数学运用

例1 写出下列函数的定义域,并判断它们的奇偶性

(1)= ; (2)= ;(3)= ;(4)= .

例2 比较下列各题中两个值的大小.

(1)1.50.5与1.70.5 (2)3.141与π1

(3)(-1.25)3与(-1.26)3(4)3 与2

例3 幂函数=x;=xn;=x1与=x在第一象限内图象的排列顺序如图所示,试判断实数,n与常数-1,0,1的大小关系.

练习:(1)下列函数:①=0.2x;②=x0.2;

③=x3;④=3x2.其中是幂函数的有 (写出所有幂函数的序号).

(2)函数 的定义域是 .

(3)已知函数 ,当a= 时,f(x)为正比例函数;

当a= 时,f(x)为反比例函数;当a= 时,f(x)为二次函数;

当a= 时,f(x)为幂函数.

(4)若a= ,b= ,c= ,则a,b,c三个数按从小到大的顺序排列为 .

四、要点归纳与方法小结

1.幂函数的概念、图象和性质;

2.幂值的大小比较方法.

五、作业

课本p90-2,4,6.

奇函数偶函数教案篇7

目标:

1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;

2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;

3、 掌握 rt △中的锐角三角函数的表示:

sina= , cosa= , tana=

4 、掌握锐角三角函数的取值范围;

5 、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。

教学重点:

锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。

教学难点:

锐角三角函数概念的形成。

教学过程:

一、创设情境:

鞋跟多高合适?

美国人体工程学研究人员卡特·克雷加文调查发现, 70 %以上的女性喜欢穿鞋跟高度为 6 至 7 厘米左右的高跟鞋。但专家认为穿 6 厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。

据研究,当高跟鞋的鞋底与地面的夹角为 11 度左右时,人脚的感觉最舒适。假设某成年人脚前掌到脚后跟长为 15 厘米,不难算出鞋跟在 3 厘米左右高度为最佳。

问:你知道专家是怎样计算的吗?

显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。

二、探索新知:

1 、下面我们一起来探索一下。

实践一:作一个 30 °的∠ a ,在角的边上任意取一点 b ,作 bc ⊥ ac 于点 c 。

⑴计算,,的值,并将所得的结果与你同伴所得的结果进行比较。∠ a=30 °时学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ⑵将你所取的 ab 的值和你的同伴比较。

实践二:作一个 50 °的∠ a ,在角的边上任意取一点 b ,作 bc ⊥ ac 于点 c 。

( 1 )量出 ab , ac , bc 的长度(精确到 1mm )。

( 2 )计算bc / ab ,ac / ab,的值(结果保留 2 个有效数字),并将所得的结果与你同伴所得的结果进行比较。∠ a=50 °时 ab ac bc 学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ( 3 )将你所取的 ab 的值和你的同伴比较。

2 、经过实践一和二进行猜测

猜测一:当∠ a 不变时,三个比值与 b 在 am 边上的位置有无关系?

猜测二:当∠ a 的大小改变时,相应的三个比值会改变吗?

3、 用理论推理

如图, b 、 b 1 是一边上任意两点,作 bc ⊥ ac 于点 c , b 1 c 1 ⊥ ac 1 于点 c 1 ,

判断比值与,与,与是否相等,并说明理由。

4 、归纳总结得到新知:

⑴三个比值与 b 点在的边 am 上的位置无关;

⑵三个比值随的变化而变化,但(0 °﹤∠α﹤90 ° )确定时,三个比值随之确定;

比值,,都是锐角的函数

比值叫做的正弦, sinα =

比值叫做的余弦, cos α=

比值叫做的正切, tanα =

( 3 )注意点: sin α, cos α, tan α都是一个完整的符号,单独的 “ sin ”没有意义,其中前面的“∠”一般省略不写。

强化读法,写法;分清各三角函数的自变量和应变量。

三、深化新知

1 、三角函数的定义

在 rt △ abc 中,如果锐角 a 确定,那么∠ a 的对边与斜边的比、邻边与斜边的比也随之确定 ,则有

sina =

cosa=

2 、提问:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?

(点拨)直角三角形中,斜边大于直角边。

生:独立思考,尝试回答,交流结果。

明确:锐角的三角函数值的范围: 0 < sin α< 1 , 0 < cos α< 1。

四、巩固新知

例 1. 如图 , 在 rt △ abc 中 , ∠ c=90 °, ab=5,bc=3,

( 1 )求∠ a 的正弦、余弦和正切 。

( 2 )求∠ b 的正弦、余弦和正切。

分析:由勾股定理求出 ac 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

提问:观察以上计算结果 , 你发现了什么 ?

明确: sina=cosb , cosa=sinb , tana · tanb=1

五、升华新知

例 2 . 如图 : 在 rt △ abc, ∠ b=90 ° ,ac=200,sina=0.6 ,求 bc 的长 。

由例 2 启发学生解决情境创设中的问题。

六、课堂小结:谈谈今天的收获

1 、内容总结

( 1 )在 rt Δ abc 中 , 设∠ c=90 ° ,∠α为 rt Δ abc 的一个锐角,则

∠α的正弦,∠α的余弦,

∠α的正切

2 、方法归纳

在涉及直角三角形边角关系时,常借助三角函数定义来解

四、布置作业

奇函数偶函数教案7篇相关文章:

幼儿磁铁教案教案7篇

音乐教案大班教案优秀7篇

小学美术教案教案精选7篇

大班教案植树节教案最新7篇

中班教案别说我小教案优质7篇

大班教案植树节教案优质7篇

五年级语文上册教案全册教案7篇

教案幼儿园科学教案模板7篇

防溺水安全教案小班教案优秀7篇

大班教案认识圆柱体教案7篇

奇函数偶函数教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
90409