必修三数学教案6篇

时间:
betray
分享
下载本文

在编写教案时,教师应该充分考虑到学生的背景和文化差异,教案不仅是一份计划,更是一份对使命的承诺,心得大全网小编今天就为您带来了必修三数学教案6篇,相信一定会对你有所帮助。

必修三数学教案6篇

必修三数学教案篇1

教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性、了解有限集、无限集、空集概念,

教学重点:集合概念、性质;“∈”,“?”的使用

教学难点:集合概念的理解;

课型:新授课

教学手段:

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料p17)。

下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二、新课教学

“物以类聚,人以群分”数学中也有类似的分类。

如:自然数的集合0,1,2,3,……

如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

1、一般地,指定的某些对象的全体称为集合,标记:a,b,c,d,…

集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…

2、元素与集合的关系

a是集合a的元素,就说a属于集合a,记作a∈a,

a不是集合a的元素,就说a不属于集合a,记作a?a

思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

例1:判断下列一组对象是否属于一个集合呢?

(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母

(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数

(9)方程的实数解

评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。

3、集合的中元素的三个特性:

1、元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

2、元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的。集合

3、元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

集合元素的三个特性使集合本身具有了确定性和整体性。

4、数的集简称数集,下面是一些常用数集及其记法:

非负整数集(即自然数集)记作:n有理数集q

正整数集n__或n+实数集r

整数集z注:实数的分类

5、集合的分类原则:集合中所含元素的多少

①有限集含有限个元素,如a={-2,3}

②无限集含无限个元素,如自然数集n,有理数

③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ

三、课堂练习

1、用符合“∈”或“?”填空:课本p15练习惯1

2、判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”

(1)所有在n中的元素都在n__中( )

(2)所有在n中的元素都在z中( )

(3)所有不在n__中的数都不在z中( )

(4)所有不在q中的实数都在r中( )

(5)由既在r中又在n__中的数组成的集合中一定包含数0( )

(6)不在n中的数不能使方程4x=8成立( )

四、回顾反思

1、集合的概念

2、集合元素的三个特征

其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的

“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的

3、常见数集的专用符号、

五、作业布置

1、下列各组对象能确定一个集合吗?

(1)所有很大的实数

(2)好心的人

(3)1,2,2,3,4,5、

2、设a,b是非零实数,那么可能取的值组成集合的元素是

3、由实数x,-x,|x|,所组成的集合,最多含( )

(a)2个元素(b)3个元素(c)4个元素(d)5个元素

4、下列结论不正确的是( )

a、o∈nb、qc、oqd、-1∈z

5、下列结论中,不正确的是( )

a、若a∈n,则-anb、若a∈z,则a2∈z

c、若a∈q,则|a|∈qd、若a∈r,则

6、求数集{1,x,x2-x}中的元素x应满足的条件;

必修三数学教案篇2

教学目标:

1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。

3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。

教学重点、难点:

1、重点:指数函数的图像和性质

2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。

教学方法:

引导——发现教学法、比较法、讨论法

教学过程:

一、事例引入

t:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?

s:————————

t:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

c:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,——————。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y =2 x)

s,t:(讨论)这是球菌个数y关于分裂次数x的函数,该函数是什么样的形式(指数形式),

从函数特征分析:底数2是一个不等于1的正数,是常量,而指数x却是变量,我们称这种函数为指数函数——点题。

二、指数函数的定义

c:定义:函数y = a x(a>0且a≠1)叫做指数函数,x∈r。。

问题1:为何要规定a>0且a ≠1?

s:(讨论)

c:(1)当a

就没有意义;

(2)当a=0时,a x有时会没有意义,如x= — 2时,

(3)当a = 1时,函数值y恒等于1,没有研究的必要。

巩固练习1:

下列函数哪一项是指数函数()

a、 y=x 2 b、y=2x 2 c、y= 2 x d、y= —2 x

必修三数学教案篇3

教学准备

教学目标

1、 知识与技能

(1)进一步理解表达式y=asin(ωx+φ),掌握a、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、 过程与方法

通过具体例题和学生练习,使学生能正确作出函数y=asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、 情感态度与价值观

通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点

重点:函数y=asin(ωx+φ)的图像,函数y=asin(ωx+φ)的性质。

难点: 各种性质的应用。

教学工具

投影仪

教学过程

?创设情境,揭示课题】

函数y=asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、布置作业: 习题1-7第4,5,6题。

课后小结

归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业: 习题1-7第4,5,6题。

板书

必修三数学教案篇4

教学目标

1、数列求和的综合应用

教学重难点

2、数列求和的综合应用

教学过程

典例分析

3、数列{an}的前n项和sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和tn

4、等差数列{an}的公差为,s100=145,则a1+a3 + a5 + …+a99=

5、已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6、数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn}前n项和公式

7、四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8、在等差数列{an}中,a1=20,前n项和为sn,且s10= s15,求当n为何值时,sn有最大值,并求出它的最大值

?已知数列{an},an∈n,sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0、已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈n)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11 。购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 。某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

必修三数学教案篇5

?平面向量的数量积》教案

教学准备

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

一、复习引入:

1、向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

p107 习题2.4 a组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业

p107 习题2.4 a组2、7题

板书

必修三数学教案篇6

学习目标

1、结合已学过的数学实例,了解归纳推理的含义;2、能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用、

2、结合已学过的数学实例,了解类比推理的含义;

3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用、

学习过程

一、课前准备

问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是

……所以n边形的内角和是

新知1:从以上事例可一发现:

叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。

新知2:类比推理就是根据两类不同事物之间具有

推测其中一类事物具有与另一类事物的性质的推理、

简言之,类比推理是由的推理、

新知3归纳推理就是根据一些事物的',推出该类事物的

的推理、归纳是的过程

例子:哥德巴赫猜想:

观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

归纳推理的一般步骤

1通过观察个别情况发现某些相同的性质。

2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。

※典型例题

例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和sn的归纳过程。

变式1观察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……

你能猜想到一个怎样的结论?

变式2观察下列等式:1=1

1+8=9,

1+8+27=36,

1+8+27+64=100,

……

你能猜想到一个怎样的结论?

例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。

变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式

例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、

圆的概念和性质球的类似概念和性质

圆的周长

圆的面积

圆心与弦(非直径)中点的连线垂直于弦

与圆心距离相等的弦长相等,

※动手试试

1、观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?

2如果一条直线和两条平行线中的一条相交,则必和另一条相交。

3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。

三、总结提升

※学习小结

1、归纳推理的定义、

2、归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)、

3、合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法

必修三数学教案6篇相关文章:

小学三年级翠鸟教案6篇

三年级下册园地六教案5篇

三年级开学第一课教案5篇

三年级科学上册教案7篇

三年级下健康教案5篇

小学数学三年级个人工作总结推荐8篇

小学数学三年级个人工作总结8篇

三年级语文鹅教案优秀5篇

音乐三只猴子教案8篇

三年级语文鹅教案精选8篇

必修三数学教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
46678