人教版数学七年级上册教案7篇

时间:
Youaremine
分享
下载本文

教案必须结合具体教学内容,才能在课堂上起到有效的指导效果,我们可以通过教案来明确每节课的教学重点和难点,心得大全网小编今天就为您带来了人教版数学七年级上册教案7篇,相信一定会对你有所帮助。

人教版数学七年级上册教案7篇

人教版数学七年级上册教案篇1

知识目标

使学会解比例的方法,进一步理解和掌握比例的基本性质。

能力目标

联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

情感目标

利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

重点

使学会解比例的方法,进一步理解和掌握比例的基本性质。

难点

体现解比例在生产生活中的广泛应用。

教学过程

教学预设个性修改

目标导学,复习激趣,自主合作,汇报交流,变式训练

创境激疑一、旧知铺垫

1、什么叫做比例?

2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

3、比例有几种表示形式?

合作探究二、探索新知

1、出示埃菲尔铁挂图

2、出示例题

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的'等式)

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

(5)、 =

拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

总结这节课主要学习了什么内容?

作业布置教材43页5题

板书设计解比例

例3、解比例=

解:2.4 =1.5×6

=( )×( )

( )

教学札记

人教版数学七年级上册教案篇2

教 案

第一章 有理数

(1)本周小张一共用掉了多少钱?存进了多少钱?

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

夯实基??

(1)序号为几的零件最接近标准?

④-(-) 0.025.

第2课时 加法运算律

教学目标:

1.能运用加法运算律简化加法运算.

2.理解加法运算律在加法运算中的作用,适当进行推理训练.

教学重点:如何运用加法运算律简化运算.

教学难点:灵活运用加法运算律.

教与学互动设计:

(一)情境创设,导入新课

思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.

(二)合作交流,解读探究

计算:20+(-30)与(-30)+20两次得到的和相同吗?

得出结论:20+(-30)=(-30)+20

换几组数去试:得到加法交换律:a+b= (学生填).

其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)

计算:(1)[8+(-5)]+(-4);

(2)8+[(-5)+(-4)].

得出结论:加法结合律:(a+b)+c= .

【例1】计算:

16+(-25)+24+(-35)

【例2】课本p20例3

说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.

总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的'数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.

(三)应用迁移,巩固提高

?例3】 利用有理数的加法运算律计算,使运算简便.

(1)(+9)+(-7)+(+10)+(-3)+(-9)

(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)

?例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

(四)总结反思,拓展升华

本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.

(五)课堂跟踪反馈

夯实基??

1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )

a.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

b.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

c.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

d.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

2.计算:(-2)+4+(-6)+8+…+(-98)+100.

提升能力

3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?

4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自a地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.

(1)问收工时距a地多远?

(2)若每千米路程耗油0.2升,问从a地出发到收工共耗油多少升?

第3课时 有理数的减法

教学目标:

1.经历探索有理数减法法则的过程,理解有理数减法法则.

2.会熟练进行有理数减法运算.

教学重点:有理数减法法则和运算.

教学难点:有理数减法法则的推导.

教与学互动设计

(一)创设情景,导入新课

观察温度计:

你能从温度计看出4℃比-3℃高出多少度吗?

学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.

(二)动手实践,发现新知

观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

结论:减去-3等于加上-3的相反数+3.

(三)类比探究,总结提高

如果将4换成-1,还有类似于上述的结论吗?

先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.

计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,

又因为(-1)+(+3)=2 ②,

由①②有(-1)-(-3)=-1+(+3) ③,

即上述结论依然成立.

试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.

再试:把减数-3换成正数,结果又如何呢?

计算9-8与9+(-8);15-7与15+(-7)

从中又能有新发现吗?

让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.

归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.

减法法则:减去一个数,等于加上这个数的相反数.

用字母表示:a-b=a+(-b).

(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

(四)例题分析,运用法则

【例】计算:

(1)(-3)-(-5); (2)0-7;

(3)7.2-(-4.8);(4)-3-5.

(五)总结巩固,初步应用

总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.

人教版数学七年级上册教案篇3

【学习目标】

1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;

2、能由实物形状想象出几何图形,由几何图形想象出实物形状;

3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】

识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

【导学指导】

一、知识链接

同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

二、自主探究

1、几何图形

(1)仔细观察图4、1—1,让同学们感受是丰富多彩的图形世界;

(2)出示一个长方体的纸盒,让同学们观察图4、1—2回答问题:

从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?

我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。

注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

2、立体图形

思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?

长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

想一想

生活中还有哪些物体的形状类似于这些立体图形呢?

思考:课本118页图4、1—4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

3、平面图形

平面图形的概念

线段、角、三角形、长方形、圆等它们的`各部分都在同一平面内,它们是平面图形。

思考:课本118页图4、1—5的图中包含哪些简单的平面图形?

请再举出一些平面图形的例子。

长方形、圆、正方形、三角形、……。

思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?

立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;

立体图形中某些部分是平面图形。

《4、1、2点、线、面、体》同步四维训练

知识点一:几何体的构成

1、下列结论正确的是(c)

①圆柱由3个面围成,这3个面都是平面;

②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;

③球仅由1个面围成,这个面是平面;

④正方体由6个面围成,这6个面都是平面、

a、①②b、②③c、②④d、①④

《4、1、2点、线、面、体》同步练习含解析

一、单选题(共12题;共24分)

1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的

a、正方形

b、等腰三角形

c、圆

d、等腰梯形

2、下面现象能说明“面动成体”的是

a、旋转一扇门,门运动的痕迹

b、扔一块小石子,小石子在空中飞行的路线

c、天空划过一道流星

d、时钟秒针旋转时扫过的痕迹

3、下列说法中,正确的是

a、棱柱的侧面可以是三角形

b、四棱锥由四个面组成的

c、正方体的各条棱都相等

d、长方形纸板绕它的一条边旋转1周可以形成棱柱

人教版数学七年级上册教案篇4

教学目标和要求:

1.理解单项式及单项式系数、次数的概念.

2.会准确迅速地确定一个单项式的系数和次数.

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.

教学过程:

一、复习引入:

1、列代数式

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

2、请学生说出所列代数式的意义.

3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

由小组讨论后,经小组推荐人员回答,教师适当点拨.

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,

如a,5.

2.练习:判断下列各代数式哪些是单项式?

(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以

四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

单项式的系数:单项式中的数字因数叫做这个单项式的系数.

单项式的'次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4.例题:

例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-,次数是3.

例2:下面各题的判断是否正确?

①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;

④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.

答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确

强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关.

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

三、课堂小结:

①单项式及单项式的系数、次数.

②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.

教学后记:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

人教版数学七年级上册教案篇5

1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.

进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

分析题目中的数量关系,用式子表示数量关系.

(设计者: )

一、创设情境 明确目标

青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.

(1)2 h行驶的路程是多少?3 h呢?t h呢?

(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

二、自主学习 指向目标

自学教材第54至55页,完成下列问题:

1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

(1)列车2 h行驶的路程为__200__km.

(2)列车3 h行驶的路程为__300__km.

(3)列车t h行驶的路程为__100t__km.

2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

三、合作探究 达成目标

用字母表示数

活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

(4)用式子表示数n的相反数.

?展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.

?小组讨论】用字母表示数有什么意义?

?反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.

?针对训练】见“学生用书”.

用字母表示简单的数量关系

活动二:阅读教科书例2中的四个问题,思考:

顺水行驶时,船的速度=________+________;

逆水行驶时,船的速度=________-________.

解答过程见教材第55页例2的解答过程.

?展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.

?小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

?反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.

注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

2.字母和数字相乘时,省略乘号,并把数字放到字母前;

3.出现除式时,用分数的形式表示;

4.结果含加减运算的,需要带单位时,式子要用“()”;

5.系数是带分数时,带分数要化成假分数.

?针对训练】见“学生用书”.

四、总结梳理 内化目标

1.用字母表示数的意义.

2.用含有字母的式子表示数量关系的意义.

3.用含有字母的式子表示数量关系时要注意的问题.

实际问题―→用字母表示数―→用字母表示数量关系

《2.1整式》同步练习含答案

1. 其中长方形的长为a,宽为b.

(1)阴影部分的面积是多少?

(2)你能判断它是单项式或多项式吗?它的次数是多少?

《2.1整式》课后练习含答案

知识要点

1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:

(1)不含加减运算;

(2)可以含乘、除、乘方运算,但分母中不能含有字母.

2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.

3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.

4.整式:单项和多项式统称整式.

人教版数学七年级上册教案篇6

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

人教版数学七年级上册教案篇7

教学目标

?知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

?过程与方法目标】

?情感态度价值观目标】

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

?教学重点】

数轴的意义及作用。

?教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

?数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的',方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,3

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

人教版数学七年级上册教案7篇相关文章:

初中地理七年级上册教案6篇

教科版三年级科学上册教案8篇

七年级语文上册语文教案5篇

鄂教版语文三年级上册教案8篇

6年级数学上册教案7篇

苏教版五年级上册教案数学教案7篇

六年级上册数学教案模板7篇

六年级上册数学教案8篇

四年级数学上册教案5篇

六年级上册数学教案参考5篇

人教版数学七年级上册教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
67820